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Abstract. We demonstrate that the results of the complete first-order calculation of the nonfactorizable
QED corrections to the single-inclusive cross sections for e+e− → W+W − → 4 fermions can be reproduced
by a simple, physically motivated ansatz. The ansatz allows us to effectively take into account the screening
role of the non-Coulomb radiative mechanisms by introducing a dampening factor in front of the width-
dependent part of the known first-order Coulomb correction, the so-called screened-Coulomb ansatz.

1 Introduction

A precise study of W boson physics is one of the main ob-
jectives of the LEP2 program; a future high-energy elec-
tron (muon) collider will open up unique new possibilities.
This physics goal requires very accurate theoretical knowl-
edge of the standard model predictions for the process

e+e− → W+W− → 4 fermions. (1)

In particular, the role of QED radiative corrections, as
well as that of finite-width effects, should be understood
in detail [1].

It is well known that the instability of W bosons (the
W -boson width ΓW ≈ 2.1 GeV) can strongly modify the
“stable W” results. Special attention should be paid to
the radiative interferences (both virtual and real) that in-
terconnect the production and decay stages of the process
(1). In particular, there is a class of contributions corre-
sponding to the so-called “charged-particle poles” [1–4]
that may induce a strong dependence of differential dis-
tributions on W -boson virtualities. The final-state inter-
actions may result in nonfactorizable QED radiative cor-
rections to the Born cross section of (1). Recall that the
level of suppression of the width-induced effects depends
on the degree of inclusiveness of the distribution. Thus,
for the totally inclusive cross section, the QED nonfactor-
izable corrections cancel up to the terms of O(αΓW /MW )
[2,3]. In contrast, differential distributions could be dis-
torted on the level of O(α). Particular attention should
be paid to the threshold region,

E =
√

s − 2MW ∼ O(ΓW ). (2)

Here the instability-induced modification of the Coulomb
interaction between the slowly moving W bosons is espe-
cially significant (for details, see [2,5]). In [5] it is shown
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that the W -boson width effects drastically change the on-
shell value of the Coulomb correction, even at E � ΓW ,
but that after integration over the invariant masses of
the W bosons, the result corresponding to the stable W
bosons is recovered far above the threshold region.

Recall that in the threshold region, the Coulomb con-
tribution can be uniquely separated from the other elec-
troweak corrections. In the relativistic region, however, it
is neither uniquely defined nor gauge-invariant. At larger
W -boson velocities β, the width-induced modifications of
the differential distributions caused by other radiative
mechanisms (for example, intermediate–final or final–final
state interferences [2,4]) may become just as important.
These mechanisms may contribute to both factorizable
and nonfactorizable corrections. It is discussed in [4] that
in the relativistic region, a cancellation between the dif-
ferent sources of instability takes place. As a result, the
nonfactorizable corrections may vanish and the stable-
W result may be recovered. In the ultra-relativistic limit,
(1 − β) � 1, such a cancellation appears quite naturally;
in fact, it has its origin in the conservation of “charged”
currents (see, e.g., [6–8]).

In the intermediate region, β <∼ 1, which is relevant for
the current LEP2 energy range, an analysis of the non-
factorizable corrections to the differential cross sections of
W+W− production requires detailed study.

During the last few years there has been a significant
progress in our understanding of the radiative effects in
the off-shell gauge-boson pair production [1]. In particu-
lar, recently a complete calculation of the nonfactorizable
corrections to the process (1) has been independently per-
formed by two groups [9–11] (see also [4]). The results are
quite consistent with each other.

In [8], an attempt has been made to estimate the possi-
ble screening impact of other radiative interference mech-
anisms on the Coulomb scenario in the relativistic regime.
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Using physical intuition, the authors briefly consider the
consequences of the so-called dampened (screened) Cou-
lomb ansatz. Within this ansatz, an extra screening fac-
tor (1 − β)2 is introduced in front of the width-depen-
dent arctan term in the known first-order unstable
Coulomb formula (see, e.g., [5,12]). Such a simple pre-
scription is motivated by a model analysis of [4], where
a simple scenario is considered: one of the W bosons is
assumed to be stable. Another example of the cancella-
tion of the off-shell effects at relativistic energies has been
known for quite a while (see, e.g., [6,13]). When consider-
ing the gluon radiation corresponding to the top produc-
tion and decay at very high energies, one observes that
the width-dependent effects vanish when the emission at
the production and decay stages are added.

Two obvious advantages of the screened-Coulomb
ansatz are that it is very simple and that it readily al-
lows for a transparent physical interpretation. It could be
useful from the point of view of practical applications as
well. It will require, however, special detailed study in or-
der to understand whether this scenario can be taken as
a realistic plausible baseline.

We aim in this paper to perform a detailed compar-
ison of the screened-Coulomb ansatz with the results of
the recent calculations [9–11]. It appears that this simple
prescription provides a surprisingly reasonable quantita-
tive understanding of the screening of the nonfactorizable
terms at higher energies. The results of this paper can be
applied equally well to the γγ- initiated processes.

The paper is organized as follows. In Sect. 2 some ba-
sic formulas are presented. In Sect. 3 we study numer-
ically several characteristic observables. We conclude in
Sect. 4. The appendix contains a quantitative analysis of
the screening effects based on the explicit Feynman dia-
gram calculations.

2 Ansatz for the nonfactorizable corrections

In the Born approximation for the process (1) there are
three (signal) diagrams where two resonant W bosons are
produced and the background diagrams where, at most,
one resonant W boson is formed. The background dia-
grams are typically suppressed by O(ΓW /MW )
[O(Γ 2

W /M2
W )] with respect to the leading double resonant

contributions.
The currently most favourable approach adopted for

the calculation of the radiative corrections to the processes
involving unstable particles is the so-called pole scheme
[14]. In the double-pole approximation, one considers the
complete off-shell process as a superposition of the pro-
duction of a pair of unstable particles and their subse-
quent decays. The radiative effects are then naturally sep-
arated into two groups: factorizable and nonfactorizable.
The first type includes radiative corrections which can be
unambiguously attributed to either the production or the
decay stage of the process; they exhibit simple analytical
behaviour in the limit ΓW → 0. The second type corre-
sponds to the radiative interconnections between various
stages of the process.

It is instructive to trace the physical origin of such
separation at a point not far from the threshold. When
considering soft photons, k0 = ω � MW , the production
and decay of the W bosons can be regarded essentially as
pointlike processes with a characteristic time scale tchar ∼
1/MW . However, due to the W decays, various stages are
separated in time by an intervals τ ∼ 1/ΓW . When we
average over the times between W -pair production and
the W decays, a significant interconnection occurs only in
the ω <∼ ΓW domain. This results in the nonfactorizable
correction. The contribution to these corrections caused
by the hard photons is power-suppressed (see, e.g., [2,13,
15]).

When examining the process (1) one distinguishes
three energy domains:
– Threshold region (2) where W s are moving with a

small velocity with respect to each other, β ∼√
ΓW /MW � 1.

– Non-relativistic region, ΓW � E � MW , where the
velocity of the W s is still a small parameter, β � 1,
but the center-of-mass energy is sufficiently far from
threshold.

– Relativistic region, E ∼ MW , where velocity of the W s
is not a small parameter any more, β ∼ 1.

Recall that in the threshold and the nonrelativistic region,
the main contribution to the radiative corrections comes
from the Coulomb interaction (see [5,12]). All other effects
are suppressed by O(β). Near threshold, the Coulomb con-
tribution dominates the instability effects. In the relativis-
tic region, the terms suppressed in the nonrelativistic re-
gion are not small, and should be taken into account. The
explicit calculation of the complete nonfactorizable correc-
tion performed in [9] uses the “far from threshold” (FFT)
approximation, which assumes that ΓW � E. The accu-
racy of this approximation is O(ΓW /E). This approxima-
tion breaks down in the threshold region, but it is valid in
the (far-from-threshold) nonrelativistic region and in the
relativistic region. Note that in the nonrelativistic region,
the calculation of the complete nonfactorizable correction
agrees with the calculation of the off-shell Coulomb effect
within the adopted approximations.

We discuss below a simple ansatz based on the
Coulomb result (screened-Coulomb ansatz) which appears
to be in good agreement with the complete calculation of
the nonfactorizable corrections in both the relativistic and
nonrelativistic regions. Of course, one cannot expect that
a simple unique prescription exists that would allow one to
reproduce reasonably well the results of the explicit com-
plete calculations of the nonfactorizable corrections to the
arbitrary differential distribution1. Below we concentrate

1 When considering the angular distributions of the final-
state fermions, the general arguments based on the conserva-
tion of the charged currents (see, e.g., [6]) may be not applica-
ble, and the screened-Coulomb ansatz could be irrelevant. The
largest discrepancies should be observed near the edges of the
kinematic phase space, where the corrections are the largest
but the event statistics very limited. A detailed study of the
dependence of the nonfactorizable corrections on the fermion
angles has been presented in [9–11].
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on the quantities, which are inclusive with respect to all
the decay and production angles, such as the invariant
mass spectrum of a W boson.

Since the calculation of the nonfactorizable corrections
in [9–11] has been performed in the FFT approximation,
we shall remain within the same scheme for the screened-
Coulomb ansatz. This means that we shall not consider
the threshold region here. The reader is reminded that the
latter region has been studied in detail elsewhere (see, e.g.,
[5,12]). For reference purposes, we consider also a model
case where the cross section is corrected by the Coulomb
effect only. Then the differential distribution over an ob-
servable X can be written in the following form2

dσCoul

dX
=

dσBorn

dX

(
1 + δCoul

)
,

δCoul = δon-shell
Coul + δnf

Coul (3)

δon-shell
Coul =

απ

2β
,

δnf
Coul = −α

β
arctan

(
M2

1 + M2
2 − 2M2

W

2MW ΓW

)
, (4)

where M1 and M2 are the invariant masses of the W
bosons, β is their on-shell velocity,

β =
√

1 − 4M2
W /s, (5)

and dσBorn/dX is the on-shell Born cross section. This
is the leading contribution to the radiative correction in
the nonrelativistic region. All other contributions, which
were neglected, are suppressed by O(β, ΓW /E), at least.
Let us emphasize that outside of the threshold region,
the Coulomb approach is just an oversimplified extreme
and, naturally, is not supposed to correspond to the true
physics. Note that throughout this paper the so-called
fixed-width scheme is used, where ΓW is the on-shell W -
boson width.

The two terms in (4) are of a different nature. The first
one represents the factorizable part of the Coulomb inter-
action; it is completely the same as the familiar Coulomb
effect for the stable case. It should be noted again that
at high energies, where β is not a small parameter, this
correction is of the same order as the rest of the radiative
corrections, and is not enhanced in any way. Typically,
the leading contribution coming from radiative corrections
goes from ∼ απ/β, at threshold, to ∼ α/π far from thresh-
old.

The second term is the nonfactorizable part of the
Coulomb correction. It arises due to the instability ef-
fects. It averages to zero when integrated over the invari-
ant masses. As discussed in [2,3] (see also [5]), this is a
general feature of the nonfactorizable corrections.

The physical reason for the separation between the fac-
torizable and nonfactorizable corrections is rooted in the

2 Here and in what follows, we consider only the first-
order Coulomb formulas. As shown in [8,16], the higher order
Coulomb effects are practically negligible.

difference in the characteristic energies and momenta of
the photons responsible for the different terms in (4).

In order to gain more insight into the above, let us
consider the diagram with the photon exchange between
the two W bosons. The denominator of the propagator of
the W boson with the 4-momentum pµ

1 is

k2 + 2kp1 + D1, D1 = p2
1 − M2

W + iΓW MW . (6)

Not too far from threshold for the on-shell (factorizable)
part of the Coulomb effect photons with energies ω ∼
β2MW and momenta |k| ∼ βMW are essential. It is
worth-while to recall that 1/(β2MW ) is the typical in-
teraction time between the W bosons, see [5]. In such a
case k2 can not be neglected in the W -boson propagator,
contrary to the ΓW MW term, see [2,5]. Therefore, the
Coulomb effect here remains unchanged by the instability
of the W bosons. On the other hand, only the photons with
the energies ω ∼ ΓW and momenta |k| ∼ ΓW /β give the
leading contribution to the off-shell part of the Coulomb
effect. Note that β/ΓW is the typical spatial separation
between the diverging W bosons [12]. Far from threshold,
at MW � E � ΓW , the two regions in the photon energy-
momentum space are well separated. Because of this fact
the effects are additive. Near threshold, where E ∼ ΓW ,
the two regions start to overlap, which is precisely the
reason why our approach to the calculation of the double
pole residues becomes invalid.

As has already been mentioned, in the relativistic do-
main, Coulomb correction does not account correctly for
all the effects. Instead, complete nonfactorizable correc-
tions are required

dσnf

dX
=

dσBorn

dX

(
1 + δnf

)
. (7)

The explicit expressions for δnf [9–11] are rather lengthy,
and for the purposes of this paper there is no need to
present them here.

Motivated by [4,8], we would like to check whether
the complete nonfactorizable corrections could be approx-
imated reasonably well by a simple ansatz based on the
screening of the nonfactorizable (off-shell) part of the
Coulomb effect

dσAns

dX
=

dσBorn

dX

(
1 + δAns

)
, (8)

where
δAns = δnf

Coul(1 − β)2. (9)

Nonfactorizable corrections distort the Breit–Wigner dis-
tribution over the invariant mass of the W boson. This
results, in particular, in the shift of the maximum of the
invariant mass distribution. The potential importance of
this effect is quite transparent, since such a shift may af-
fect the measurement of the mass of the W boson. It is
possible to estimate this shift from the relative nonfactor-
izable correction to invariant mass distribution. We will
consider specifically the distribution over the average in-
variant mass M̄ = (M1 +M2)/2. The standard expression
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Fig. 1. The complete nonfactorizable correction to
the distribution over the average invariant mass M̄ =
(M1 + M2)/2 at

√
s = 172, 183 and 195GeV, as com-

pared to the expectations from the screened ansatz
and from the unscreened-Coulomb scenarios

for the linearized shift is

∆M̄ =
1
8
Γ 2

W

dδnf(M̄)
dM̄

∣∣∣
M̄=MW

. (10)

Based on the ansatz prescription (8) and (9) for the non-
factorizable correction, we arrive at the very simple for-
mula for the shift (see also [4])

∆M̄ = −α

4
(1 − β)2

β
ΓW . (11)

In the following section we shall investigate numeri-
cally how this ansatz approximates the complete nonfac-
torizable correction to the single-inclusive distributions at
various energies. In all cases, good agreement is estab-
lished. We will show some specific examples which illus-
trate this statement.

3 Numerical results

In the following calculations, we assume

α = 1/137.0359895, α(MZ) = 1/127.9,

sin2 θW = 0.223,

MW = 80.41 GeV, ΓW = 2.06 GeV,

MZ = 91.187 GeV, ΓZ = 2.49 GeV.

(12)

We use α(MZ) to calculate the Born cross sections, and
α to calculate the radiative corrections. Results are pre-
sented in the LEP2 energy range

√
s = 160−200 GeV and

for three discrete energies:
√

s = 172, 183, and 195 GeV.
Several comparisons are made between the results of the
complete calculation of the nonfactorizable corrections [9],
the expectations based on the screened-Coulomb ansatz,
and the model unscreened-Coulomb prescription. The lat-
ter scenario can help one to assess the impact of the non-
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∆M̄ [MeV]

√
s[ GeV]160 170 180 190 200 210

−15

−10

−5

0

nf−corr
Ansatz
Coulomb  
Eq. (11)  

Fig. 2. The additional shift of the max-
imum in the distribution of the aver-
age invariant mass of two W bosons
due to the nonfactorizable correction
as a function of the collider energy,
as compared to the expectations from
the screened ansatz and from the
unscreened-Coulomb scenarios
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Fig. 3. The complete nonfactorizable correction to the
distribution over the W momentum at

√
s = 172, 183

and 195GeV, as compared to the expectations from the
screened ansatz and from the unscreened-Coulomb sce-
narios
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(δnf)
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√

s
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Fig. 4. The nonfactorizable correction
to the distribution over the Z-boson
invariant mass in e+e− → ZZ →
dd̄uū. In order to elucidate the role
of the screening factor, the nonfactor-
izable correction, δnf, is multiplied by
the (

√
s/2MZ)4 factor. The curves are

given for
√

s = 192, 250, 300, 350 and
400GeV
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Fig. 5. The additional shift of the max-
imum in the Z-boson invariant mass
distribution due to the nonfactorizable
correction as a function of the collider
energy, as compared to the expecta-
tions from the screened-ansatz scenario:
δZZ
nf ∼ (2MZ/

√
s)4

Coulomb radiative interferences on the width-dependent
effects. It should be stressed that throughout the paper,
the nonfactorizable corrections are calculated for the
purely leptonic final state (for example, µ+νµe−ν̄e).
Strictly speaking, outside threshold region, nonfactoriz-
able corrections to other final states (i.e., semi-hadronic
and purely hadronic final states) are not identical [11],
but the differences are, in fact, not so large.

Figure 1 compares the distribution over the average
invariant mass M̄ = (M1 + M2)/2 in the three scenarios
above at

√
s = 172, 183, and 195 GeV. Figure 2 shows

the additional mass shift ∆M̄ , from the nonfactorizable
effects, as a function of the collider energy. The expec-
tation corresponding to (11) is also shown. One can see
a remarkable agreement between the result of the com-
plete calculations and a simple screening recipe (11) for
the mass shift.

For practical purposes, it is useful to analyze the im-
pact of the instability effects on W -momentum distribu-
tion; see, e.g., [8]. Figure 3 compares the results for the dif-
ferential momentum distribution dσ/dp in the three sce-
narios at

√
s = 172, 183, and 195 GeV.

Figures 1 and 3 clearly show the dampening role of the
screening factor (1 − β)2. In particular, a sharp increase
in δnf around p = p0 =

√
EMW becomes much less pro-

nounced as compared to the unscreened case; see also [8].

The plots demonstrate that the screened-Coulomb ansatz
is quite reliable, even for momenta that significantly devi-
ate from p0.

Finally, recall that the high-energy behaviour of the
nonfactorizable corrections to the ZZ production is of
special interest, in particular because of a certain resem-
blance between these QED interference effects and colour-
interconnection phenomena in the gauge-boson pair pro-
duction; see, e.g., [17]. An explicit numerical calculation
confirms the presence of the same screening (1−β)2 factor
in this case; see Figs. 4 and 5. As in to the WW case, this
factor also has its origin in the conservation of currents.

4 Conclusions

The success of the precision studies of W -boson physics re-
lies on an accurate theoretical knowledge of the details of
the production and decay mechanisms. The instability of
the W bosons can, in principle, strongly modify the stan-
dard stable-W results. An important role can be played by
the radiative interference effects, which prevent the final
state in e+e− → W+W− → 4 fermions from being treated
as two separate W decays. Thus, purely QED interaction
between two unstable W bosons induces nonfactorizable
corrections to various final-state distributions. The com-
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plete analytical calculations of these corrections have been
performed only recently [9–11]. In this paper, we demon-
strate explicitly that a simple, physically motivated ansatz
allows one to approximate the nonfactorizable corrections
to the single-inclusive final state distributions with a sur-
prisingly good accuracy. This approach makes the physical
insight into the effects of instability of the W -pair produc-
tion quite transparent.

One has to bear in mind that, typically, the order of
magnitude of the nonfactorizable corrections does not ex-
ceed 1%, and that their practical relevance strongly de-
pends on the requirements of the experiment; in particu-
lar, they could match the expected accuracy of measure-
ments at a future lepton collider.

Finally, let us note that a similar screening scenario
could, in principle, provide a useful framework for studies
of QCD final-state interactions in e+e− → tt̄ and of the
colour-interconnection effects in W+W− production (see,
e.g., [17]). For example, it could be explicitly checked that
the result of the calculation of one-loop QCD interconnec-
tion effects in tt̄ production is consistent with the ansatz
proposed in this paper.
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Appendix
Screening effects: quantitative discussion

The aim of this appendix is to expose the origin of the
screening (1 − β)2 factor, based on the explicit evaluation
of Feynman diagrams.

We first consider a model case [4] (see also [7]) in which
one of the W bosons is assumed to be stable, and the
other one has the standard decay modes with decay width
ΓW . In this way, we can gain insight into the analytical
structure of the interference effects without encountering
the complications which occur in the case of two unstable
bosons. Our final result for the nonfactorizable corrections
in such a hypothetical case fully agrees with that in [4].
Nevertheless, we find it instructive to present our alterna-
tive (more transparent) derivation. The results obtained
within this simpler model will be used in the discussion of
the realistic process in which both W bosons are off-shell.

In this model example, the virtual nonfactorizable cor-
rection can be written as the interference between two
currents:

dσnf = dσBorn2Re 4παi
∫

d4k

(2π)4k2

pµ
2

(−p2k)

×
[

pµ
1

p1k
− kµ

1

k1k

]
D1

D1 + 2p1k
, (A.1)

where
D1 = p2

1 − M2
W + iMW ΓW , (A.2)

p1 and p2 are the 4-momenta of the unstable W− boson
and stable W+ boson, respectively, and k1 and k′

1 are the
4-momenta of the decay products of the off-shell W boson,
p1 = k1 + k′

1.
Note that here and in what follows, the k2 terms in

the propagators of the radiating particles are neglected.
Outside the threshold domain, an account of these terms
gives a negligibly small (order ΓW /E ) effect.

We must also include the corresponding (A.1) contri-
bution coming from the real-photon radiatiative interfer-
ence. Note that throughout this paper, we do not consider
the nonfactorizable corrections involving the initial-state
radiation because of the cancellation between the virtual
and real pieces (for details, see, e.g., the first reference
in [2]. This also allows one to apply the results to the
photon-photon initiated process.

The integrand in (A.1) has two poles in the upper-
half k0 plane (the photon pole and the W− pole). The
remaining poles are located in the lower-half plane. When
we perform the dk0 integration by closing the contour in
the upper-half-plane, we see immediately that the contri-
butions from the real and virtual pieces cancel each other.
This exemplifies the well-known cancellation between the
real and virtual emissions.3 Thus, the only nonzero con-
tribution comes from the W− pole. We found it espe-
cially convenient to perform the analysis of this contribu-
tion in the rest frame of the W−. In this Lorentz frame,
the particle 4-momenta can be written as: pµ

1 = (E1;p1),
|p1| = β̃E1, pµ

2 = (MW ,0), kµ
1 = (ε1;k1)

Let us now evaluate the integral

I = Re i
∫

d4k

k2 Poleup (p2k1)
(−p2k)(k2k)

D1

D1 + 2p1k
. (A.3)

“Poleup” denotes that the residue should be taken in the
poles located in the upper-half plane, thus only the (−p2k)
pole contributes. In the W− rest frame this term is just
−p2k = −ωMW + io. Let us take the residue of this pole
and use the cylindrical coordinates

I = −Re 2πε1

∫
dk||k⊥dk⊥dφ

k2
|| + k2

⊥

1
(−k||k1|| − k⊥k1⊥ + io)

× D1

D1 − 2|p|k||
. (A.4)

Now we carry out the k|| integration.The integrand has ra-
diating particle poles, which are located in the upper-half
k|| plane. The photon poles occur at k|| = ±ik⊥. Now we
close the contour in the lower-half plane in order to avoid
all charged-particle poles. Then the interference contribu-
tion becomes

I = −Re 2π2ε1

∫
dk⊥dφ

k⊥
1

(ik1|| − |k1⊥| cos φ)

× D1

D1 + 2|p|ik⊥
. (A.5)

3 This cancellation is similar to the case of the nonfactoriz-
able corrections caused by the initial–final state radiative in-
terference, see [2,4].
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The integration over the azimuthal angle φ is quite
straightforward. The integral over k⊥ is infrared-divergent,
but the divergent piece is purely imaginary. Finally, we ar-
rive at

I ∼ ε1
|k1|Re i ln

D1

i
. (A.6)

So far, we have evaluated only the second term in
(A.1). The first term can be treated in an analogous way
after the substitution k1 → p1. The complete nonfactoriz-
able correction is then given by

δnf ∼
(

E

|p1| − ε1
|k1|

)
Re i ln

D1

i
=

1 − β̃

β̃
Re i ln

D1

i
. (A.7)

The fact that the prelogarithmic factor approaches zero
as β̃ → 1 is a direct consequence of the charged-current
conservation. Recall that β̃ =

√
1 − M2

W /E2
1 is taken in

the system where W− is at rest. Now we return to the
center-of-mass frame, where the velocities of W is β (β =√

1 − 4M2
W /s); it is connected to β̃ by β̃ = 2β/(1 + β2).

This allows us to present the complete nonfactorizable cor-
rection in the canonical ansatz form

δnf ∼ (1 − β)2

2β
arctan

M2
1 − M2

W

MW ΓW
. (A.8)

Now we turn to the realistic case of two off-shell W bosons.
We shall concentrate on the high-energy behaviour of the
complete nonfactorizable correction.

The virtual nonfactorizable correction can be presented
in a standard form as a sum of the current interferences

Mvirt
nf = iMBorn

∫
d4k

(2π)4k2

[
(J0J+)+(J0J−)+(J+J−)

]
.

(A.9)
The currents are given by

J µ
0 = e

[
pµ
1

kp1
+

pµ
2

−kp2

]
,

J µ
+ = − e

[
pµ
1

kp1
− kµ

1

kk1

]
D1

D1 + 2kp1
,

J µ
− = − e

[
pµ
2

−kp2
− kµ

2

−kk2

]
D2

D2 − 2kp2
(A.10)

Here p1,2 are the 4- momenta of the W bosons, and k1,2 are
the 4-momenta of the corresponding charged-decay prod-
ucts. There is also a corresponding contribution from the
real-photon radiation interferences. The first and the sec-
ond terms in (A.9) can be treated in exactly the same
way as the previous model case. Therefore, we shall con-
centrate on the third term, which has a different analytical
structure.

Recall that at higher energies, the dominant contribu-
tion to the radiative interference effects comes from the
photons (real or virtual), with the energies

ω ∼ ΓW
MW

EW
, 2EW =

√
s; (A.11)

see, e.g., [13]. One can arrive at the same conclusion from
an explicit estimate of the dominant contribution to the
integral (A.10).

To be specific, we concentrate below on the typical
case of the W -decay mass distribution. Therefore, it is
assumed that the integration over the decay products has
already been carried out. Let us analyze the consequences
of this integration for the Born decay cross section and for
the nonfactorizable currents (A.10). First, recall that the
squared Born decay matrix element can be written as

Mµ
decM∗ ν

dec ∼ 1
4
Sp
[
γµ(1 − γ5) 6 k1γ

ν(6 p1− 6 k1)
]

= ∆µν
V − i∆µν

A ,

∆µν
V = kµ

1 pν
1 + kν

1pµ
1 − 2kµ

1 kν
1 − gµν M2

W

2
,

∆µν
A = εµνk1p1 , (A.12)

where indices µ and ν are to be contracted with the cor-
responding ones in the production part of the Born cross
section. We use the notation εµνρ p = εµνραpα. Let us start
from the vector piece ∆µν

V .
The Born decay cross section, integrated over the phase

space of the decay products, is given by

Iµν
Born =

∫
d4k1 δ(k2

1) δ
(
M2

W − 2(p1 × k1)
) × ∆µν

V

=
π

6
M2

W

[
gµν − pµ

1pν
1

M2
W

]
. (A.13)

Consider now an integral over the corresponding nonfac-
torizable current

Iµνα
nf, V =

∫
d4k1 δ(k2

1) δ
(
M2

W − 2(p1 × k1)
) × ∆µν

V

×
[

pα
1

kp1
− kα

1

kk1

]
. (A.14)

Tensor Iµνα
nf, V can depend only on the 4-vectors pµ

1 and kµ,
and has the following general features:

• Iµνα
nf, V = Iνµα

nf, V ,

• Iµνα
nf, V p1, µ = 0,

• Iµνα
nf, V kα = 0,

• Iµνα
nf, V gµα = 0. (A.15)

It is convenient to carry out the integration in the W -
boson rest frame. The integral Iµνα

nf, V simplifies in the high-
energy limit if one recalls that only the soft photons (A.11)
are responsible for the nonfactorizable correction. Then
pµ
1 ∼ EW , and kµ ∼ ΓW MW /EW .

Iµνα
nf, V = A

(
pα
1

kp1
− kα

k2

)[
gµν +

k2

(kp1)2
pµ
1pν

1 + M2
W

kµkν

(kp1)2

− 1
(kp1)

[
kµpν

1 + pµ
1kν

]]
, (A.16)
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A =
π

4
M4

W k2

(kp1)2

[
1 +

1
2

ln
M2

W k2

4(kp1)2

]
. (A.17)

Note that A ∼ E−2
W (we keep track of the energy depen-

dence only), since (kp1) ∼ MW ΓW and k2 ∼ Γ 2
W M2

W /E2
W .

Recall also that the µν tensor in the equation above is of
the same or lower order as in the Born approximation; see
(A.13).

Now we can readily obtain an upper limit for the third
term in the square brackets in the integrand in (A.9).

Mvirt
nf, V ∼

∫
d4k1 δ(k2

1) δ
(
M2

W − 2(p1 · k1)
)

× ∆µν
V (p1, k1)

×
∫

d4k2 δ(k2
2) δ

(
M2

W − 2(p2 · k2)
)

× ∆µ′ν′
V (p2, k2)

×
∫

d4k

(2π)4k2 (J+J−)

<∼
[
gµν − pµ

1pν
1

M2
W

][
gµν − pµ′

2 pν′
2

M2
W

]

× E−4
W

E−2
W

· E−2
W EW · E−2

W EW . (A.18)

As a result, the nonfactorizable correction is shown to ac-
quire, at high energies, an additional (screening) factor

δnf ∼ 1
E4

W

∼ (1 − β)2. (A.19)

The E−4 screening effect can be roughly understood as fol-
lows: Two powers of energy result from the photon phase
space, and the other two come from the two interfering
nonfactorizable currents, one power of energy from each
current.

To make the consideration complete, we turn now to
the axial piece of the Born decay cross section, the ∆µν

A
term in (A.12). It is possible to treat this contribution in
an analogous way as before. Here we present the result of
the integration over the decay phase space,

Iµνα
nf, A =

∫
d4k1 δ(k2

1) δ
(
M2

W − 2(p1 · k1)
)

× εµνk1p1 ×
[

pα
1

kp1
− kα

1

kk1

]

= B

[
kαεµνkp1 − k2εµναp1

]

+C

[
pα
1 εµνkp1 − (kp1)εµναp1

]
, (A.20)

where

B = −π

8
M4

W

(kp1)3

[
1 + ln

M2
W k2

4(kp1)2

]
,

C = +
π

8
M2

W

(kp1)2

[
1 +

3k2M2
W

2(kp1)2
ln

M2
W k2

4(kp1)2

]
. (A.21)

Note that B ∼ E0 and C ∼ E0 at high energy (again
we keep track of the energy dependence only). However,
the Lorentz structure of (A.20) is different from that in the
Born approximation. A nonfactorizable current integrated
over the angles of the decay products Iµνα

nf, A is supressed
by one power of energy, as compared to the Born approxi-
mation, ∼ E−1

W . An estimate similar to (A.18) shows that
the relative nonfactorizable correction behaves as ∼ E−4

W ,
where half of the supression comes from the phase space
of the photon, ∼ E−2

W , and the other half comes from the
interference between two nonfactorizble currents: about
E−1

W from each one. Thus, the result (A.19) remains valid
when the axial contribution is taken into account.
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